Researchers demonstrate in animal models that water enriched with hydrogen molecules (H2) improves the symptomatology of neuropathic pain and related emotional disturbances.
Molecular hydrogen (H2) has been accepted to be an inert and nonfunctional molecule in our body. We have turned this concept by demonstrating that H2 reacts with strong oxidants such as hydroxyl radical in cells, and proposed its potential for preventive and therapeutic applications.
It is well known that most of the ionizing radiation-induced damage is caused by hydroxyl radicals (·OH) follows radiolysis of H2O. Molecular hydrogen (H2) has antioxidant activities by selectively reducing ·OH and peroxynitrite(ONOO-).
Iron-induced oxidative stress has been found to be a central player in the pathogenesis of kidney injury. Recent studies have indicated H₂ can be used as a novel antioxidant to protect cells. The present study was designed to investigate the protective effects of H₂ against chronic intermittent hypoxia (CIH)-induced renal injury and its correlation mechanism involved in iron metabolism.
Reactive oxygen species (ROS)-induced oxidative stress in adipose tissue is associated with inflammation and the development of obesity-related metabolic disorders.
Hydrogen (H2) has advantages that lead it to be used as a novel antioxidant in preventive and therapeutic applications. H2 can permeate into biomembranes, cytosol, mitochondria and nuclei, and can be dissolved in water or saline to produce H2 water or H2-rich saline.